首页 磁力链接怎么用

[Manning] Data science bookcamp (hevc) (2021) [EN]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2025-4-20 20:02 2025-5-2 18:57 27 610.43 MB 128
二维码链接
[Manning] Data science bookcamp (hevc) (2021) [EN]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 001 Case study 1 - Finding the winning strategy in a card game.m4v785.75KB
  2. 002 Ch1. Computing probabilities using Python This section covers.m4v5.62MB
  3. 003 Ch1. Problem 2 - Analyzing multiple die rolls.m4v6.17MB
  4. 004 Ch2. Plotting probabilities using Matplotlib.m4v5.76MB
  5. 005 Ch2. Comparing multiple coin-flip probability distributions.m4v6.27MB
  6. 006 Ch3. Running random simulations in NumPy.m4v3.71MB
  7. 007 Ch3. Computing confidence intervals using histograms and NumPy arrays.m4v5.09MB
  8. 008 Ch3. Deriving probabilities from histograms.m4v5.59MB
  9. 009 Ch3. Computing histograms in NumPy.m4v5.19MB
  10. 010 Ch3. Using permutations to shuffle cards.m4v3.59MB
  11. 011 Ch4. Case study 1 solution.m4v3.68MB
  12. 012 Ch4. Optimizing strategies using the sample space for a 10-card deck.m4v3.93MB
  13. 013 Case study 2 - Assessing online ad clicks for significance.m4v2.92MB
  14. 014 Ch5. Basic probability and statistical analysis using SciPy.m4v6.13MB
  15. 015 Ch5. Mean as a measure of centrality.m4v4.7MB
  16. 016 Ch5. Variance as a measure of dispersion.m4v6.72MB
  17. 017 Ch6. Making predictions using the central limit theorem and SciPy.m4v5.06MB
  18. 018 Ch6. Comparing two sampled normal curves.m4v3.57MB
  19. 019 Ch6. Determining the mean and variance of a population through random sampling.m4v5.59MB
  20. 020 Ch6. Computing the area beneath a normal curve.m4v5.64MB
  21. 021 Ch7. Statistical hypothesis testing.m4v3.79MB
  22. 022 Ch7. Assessing the divergence between sample mean and population mean.m4v4.83MB
  23. 023 Ch7. Data dredging - Coming to false conclusions through oversampling.m4v5.85MB
  24. 024 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 1.m4v4.65MB
  25. 025 Ch7. Bootstrapping with replacement - Testing a hypothesis when the population variance is unknown 2.m4v4.71MB
  26. 026 Ch7. Permutation testing - Comparing means of samples when the population parameters are unknown.m4v4.14MB
  27. 027 Ch8. Analyzing tables using Pandas.m4v4.89MB
  28. 028 Ch8. Retrieving table rows.m4v4.33MB
  29. 029 Ch8. Saving and loading table data.m4v3.8MB
  30. 030 Ch9. Case study 2 solution.m4v3.56MB
  31. 031 Ch9. Determining statistical significance.m4v3.82MB
  32. 032 Case study 3 - Tracking disease outbreaks using news headlines.m4v772.36KB
  33. 033 Ch10. Clustering data into groups.m4v5.87MB
  34. 034 Ch10. K-means - A clustering algorithm for grouping data into K central groups.m4v5.73MB
  35. 035 Ch10. Using density to discover clusters.m4v4.96MB
  36. 036 Ch10. Clustering based on non-Euclidean distance.m4v4.87MB
  37. 037 Ch10. Analyzing clusters using Pandas.m4v3.06MB
  38. 038 Ch11. Geographic location visualization and analysis.m4v4.49MB
  39. 039 Ch11. Plotting maps using Cartopy.m4v3.3MB
  40. 040 Ch11. Visualizing maps.m4v6.38MB
  41. 041 Ch11. Location tracking using GeoNamesCache.m4v6.02MB
  42. 042 Ch11. Limitations of the GeoNamesCache library.m4v6.63MB
  43. 043 Ch12. Case study 3 solution.m4v3.68MB
  44. 044 Ch12. Visualizing and clustering the extracted location data.m4v6.68MB
  45. 045 Case study 4 - Using online job postings to improve your data science resume.m4v2.35MB
  46. 046 Ch13. Measuring text similarities.m4v3.73MB
  47. 047 Ch13. Simple text comparison.m4v4.82MB
  48. 048 Ch13. Replacing words with numeric values.m4v4.44MB
  49. 049 Ch13. Vectorizing texts using word counts.m4v4.67MB
  50. 050 Ch13. Using normalization to improve TF vector similarity.m4v4.32MB
  51. 051 Ch13. Using unit vector dot products to convert between relevance metrics.m4v3.99MB
  52. 052 Ch13. Basic matrix operations, Part 1.m4v5.3MB
  53. 053 Ch13. Basic matrix operations, Part 2.m4v3.4MB
  54. 054 Ch13. Computational limits of matrix multiplication.m4v4.47MB
  55. 055 Ch14. Dimension reduction of matrix data.m4v5.47MB
  56. 056 Ch14. Reducing dimensions using rotation, Part 1.m4v4.04MB
  57. 057 Ch14. Reducing dimensions using rotation, Part 2.m4v3.56MB
  58. 058 Ch14. Dimension reduction using PCA and scikit-learn.m4v6.43MB
  59. 059 Ch14. Clustering 4D data in two dimensions.m4v4.85MB
  60. 060 Ch14. Limitations of PCA.m4v3.12MB
  61. 061 Ch14. Computing principal components without rotation.m4v4.7MB
  62. 062 Ch14. Extracting eigenvectors using power iteration, Part 1.m4v4.38MB
  63. 063 Ch14. Extracting eigenvectors using power iteration, Part 2.m4v3.5MB
  64. 064 Ch14. Efficient dimension reduction using SVD and scikit-learn.m4v5.18MB
  65. 065 Ch15. NLP analysis of large text datasets.m4v4.49MB
  66. 066 Ch15. Vectorizing documents using scikit-learn.m4v7.16MB
  67. 067 Ch15. Ranking words by both post frequency and count, Part 1.m4v4.98MB
  68. 068 Ch15. Ranking words by both post frequency and count, Part 2.m4v4.57MB
  69. 069 Ch15. Computing similarities across large document datasets.m4v5.26MB
  70. 070 Ch15. Clustering texts by topic, Part 1.m4v6.09MB
  71. 071 Ch15. Clustering texts by topic, Part 2.m4v6.87MB
  72. 072 Ch15. Visualizing text clusters.m4v5.66MB
  73. 073 Ch15. Using subplots to display multiple word clouds, Part 1.m4v4.17MB
  74. 074 Ch15. Using subplots to display multiple word clouds, Part 2.m4v4.37MB
  75. 075 Ch16. Extracting text from web pages.m4v4.04MB
  76. 076 Ch16. The structure of HTML documents.m4v5.34MB
  77. 077 Ch16. Parsing HTML using Beautiful Soup, Part 1.m4v4.44MB
  78. 078 Ch16. Parsing HTML using Beautiful Soup, Part 2.m4v3.78MB
  79. 079 Ch17. Case study 4 solution.m4v3.56MB
  80. 080 Ch17. Exploring the HTML for skill descriptions.m4v4.71MB
  81. 081 Ch17. Filtering jobs by relevance.m4v7MB
  82. 082 Ch17. Clustering skills in relevant job postings.m4v6.2MB
  83. 083 Ch17. Investigating the technical skill clusters.m4v4.13MB
  84. 084 Ch17. Exploring clusters at alternative values of K.m4v5.22MB
  85. 085 Ch17. Analyzing the 700 most relevant postings.m4v3.73MB
  86. 086 Case study 5 - Predicting future friendships from social network data.m4v6.84MB
  87. 087 Ch18. An introduction to graph theory and network analysis.m4v6.05MB
  88. 088 Ch18. Analyzing web networks using NetworkX, Part 1.m4v3.88MB
  89. 089 Ch18. Analyzing web networks using NetworkX, Part 2.m4v4.64MB
  90. 090 Ch18. Utilizing undirected graphs to optimize the travel time between towns.m4v5.65MB
  91. 091 Ch18. Computing the fastest travel time between nodes, Part 1.m4v3.13MB
  92. 092 Ch18. Computing the fastest travel time between nodes, Part 2.m4v4.11MB
  93. 093 Ch19. Dynamic graph theory techniques for node ranking and social network analysis.m4v6.71MB
  94. 094 Ch19. Computing travel probabilities using matrix multiplication.m4v3.58MB
  95. 095 Ch19. Deriving PageRank centrality from probability theory.m4v4.29MB
  96. 096 Ch19. Computing PageRank centrality using NetworkX.m4v3.85MB
  97. 097 Ch19. Community detection using Markov clustering, Part 1.m4v5.93MB
  98. 098 Ch19. Community detection using Markov clustering, Part 2.m4v6.74MB
  99. 099 Ch19. Uncovering friend groups in social networks.m4v4.77MB
  100. 100 Ch20. Network-driven supervised machine learning.m4v4.33MB
  101. 101 Ch20. The basics of supervised machine learning.m4v4.29MB
  102. 102 Ch20. Measuring predicted label accuracy, Part 1.m4v4.74MB
  103. 103 Ch20. Measuring predicted label accuracy, Part 2.m4v5.44MB
  104. 104 Ch20. Optimizing KNN performance.m4v3.89MB
  105. 105 Ch20. Running a grid search using scikit-learn.m4v4.26MB
  106. 106 Ch20. Limitations of the KNN algorithm.m4v4.88MB
  107. 107 Ch21. Training linear classifiers with logistic regression.m4v5.63MB
  108. 108 Ch21. Training a linear classifier, Part 1.m4v4.74MB
  109. 109 Ch21. Training a linear classifier, Part 2.m4v6.3MB
  110. 110 Ch21. Improving linear classification with logistic regression, Part 1.m4v4.26MB
  111. 111 Ch21. Improving linear classification with logistic regression, Part 2.m4v3.88MB
  112. 112 Ch21. Training linear classifiers using scikit-learn.m4v4.75MB
  113. 113 Ch21. Measuring feature importance with coefficients.m4v7.38MB
  114. 114 Ch22. Training nonlinear classifiers with decision tree techniques.m4v6.36MB
  115. 115 Ch22. Training a nested if_else model using two features.m4v5.34MB
  116. 116 Ch22. Deciding which feature to split on.m4v5.96MB
  117. 117 Ch22. Training if_else models with more than two features.m4v5.38MB
  118. 118 Ch22. Training decision tree classifiers using scikit-learn.m4v4.95MB
  119. 119 Ch22. Studying cancerous cells using feature importance.m4v5.41MB
  120. 120 Ch22. Improving performance using random forest classification.m4v5.12MB
  121. 121 Ch22. Training random forest classifiers using scikit-learn.m4v4.31MB
  122. 122 Ch23. Case study 5 solution.m4v3.61MB
  123. 123 Ch23. Exploring the experimental observations.m4v4.09MB
  124. 124 Ch23. Training a predictive model using network features, Part 1.m4v3.98MB
  125. 125 Ch23. Training a predictive model using network features, Part 2.m4v4.13MB
  126. 126 Ch23. Adding profile features to the model.m4v5.21MB
  127. 127 Ch23. Optimizing performance across a steady set of features.m4v4.03MB
  128. 128 Ch23. Interpreting the trained model.m4v4.55MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统